A new variational multiscale formulation for stratified incompressible turbulent flows

J. Yan, A. Korobenko, A.E. Tejada-Martínez, R. Golshan, Y. Bazilevs

1. Introduction

Many geophysical flows in lakes, reservoirs, coastal waters, and atmosphere involve a vertically stratified fluid. Because of their ubiquity in nature, their mathematical complexity, and the challenges involved in their numerical approximation, stratified flows are of great research as well as practical interest in such areas as geophysical fluid dynamics and wind energy. Of particular interest here are stable boundary layers which can be generated, for example, by the advection of warm air over a colder surface in the atmosphere or cold water under a warmer surface in the ocean. In the ocean both temperature and salinity play important roles in determining the overall density stratification. Such flows, in the turbulent regime, are already numerically challenging due to the presence of a cascade of spatial and temporal scales, which need to be approximated and/or modeled. The presence of density stratification complicates matters further, and gives rise to additional flow modeling and simulation challenges.

Aiming to accurately simulate high-Reynolds-number stratified flows in complex-geometry configurations, in the present work, we develop a new residual-based variational multiscale (RBVMS) formulation for stratified incompressible turbulent flows. RBVMS was first proposed in [4] for large-eddy simulations (LES) of unstratified incompressible turbulent flows. Since then, several research contributions [3,8,16,22,44,51] showed that RBVMS yielded accurate solutions on meshes with LES-level resolution that converged rapidly to the direct numerical simulation (DNS) results with mesh refinement. These features, combined with geometric flexibility of RBVMS, are particularly attractive for predictive simulation of high-Reynolds-number flows for engineering applications, such as wind-turbine aerodynamics and fluid–structure interaction (FSI) [10,24,33,53], FSI of compliant hydrofoils [2,52], patient-specific cardiovascular FSI [40,42], and bioprosthesis heart valves [26,32].

Recently, a stratified turbulent flow formulation based on the Arbitrary Lagrangian–Eulerian Variational Multiscale (ALE-VMS) framework [7,12,14,15,40–42] was proposed in [11]. The formulation was an extension of RBVMS to moving domains through the ALE [28] technique, which is widely used in applications of flows with moving boundaries and interfaces [13,46–48]. However, in the design of the fine-scale fields it was assumed in [11] that the velocity, pressure, and density fine scales were directly proportional only to the strong residuals of their respective equations. In the present work, borrowing ideas from stabilized methods for advective–diffusive systems and compressible flows [29,30,38,49], we design a new closure model for the fine scales that explicitly accounts for the coupling between the velocity and density fields.

This novel RBVMS formulation is implemented both in the context of the Finite Element Method (FEM) and Isogeometric Analysis.
In Section 2 the governing equations of density-stratified flows are presented. In Section 3 the new RBVMS formulation is developed and stated. In Section 4 a self-propelled turbulent wake and stably stratified turbulent channel flows are simulated using the original and new RBVMS formulations. The former example is computed using linear tetrahedral FEM, while the latter example is computed using NURBS-based IGA. The numerical results indicate that the new RBVMS formulation is more accurate than its original counterpart. In Section 4 conclusions are drawn.

2. Governing equations of density-stratified flows

Stratified environmental flows are typically modeled using the Navier–Stokes equations of incompressible flows with the addition of a Boussinesq forcing term. We focus on the density-stratified case and state the governing partial differential equations in the non-dimensional form as follows:

\[
\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} - \nabla \cdot \mathbf{f} - \mathbf{f}_b = 0, \tag{1}
\]

\[
\nabla \cdot \mathbf{u} = 0, \tag{2}
\]

\[
\frac{\partial \mathbf{\psi}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{\psi} - \nabla \cdot \mathbf{v}_\psi \nabla \mathbf{\psi} = 0. \tag{3}
\]

In Eqs. (1)-(2) \(\mathbf{u} \) is the fluid velocity, \(\mathbf{f} \) is the body force, \(\mathbf{f}_b \) is the Boussinesq forcing term, \(\mathbf{\sigma} \) is the stress defined as

\[
\mathbf{\sigma} (\mathbf{u}, p) = -p \mathbf{I} + 2\nu \nabla^2 \mathbf{u}, \tag{4}
\]

where \(\mathbf{I} \) is the identity tensor, \(p \) is the pressure, \(\nabla^2 \) is the symmetric gradient operator, \(\nu = 1/Re \), and \(Re \) is the Reynolds number. In Eq. (3) \(\mathbf{\psi} \) is the fluid density and \(\mathbf{v}_\psi = 1/(PrRe) \), where \(Pr \) is the Prandtl number. The density \(\phi \) is decomposed into three parts, namely,

\[
\phi (\mathbf{x}, t) = \rho_0 + \tilde{\rho} (x_3) + \rho' (\mathbf{x}, t), \tag{5}
\]

where \(\rho_0 \) is a constant background density, \(\tilde{\rho} (x_3) \) is a linearly varying field in the direction of gravity, and \(\rho' (\mathbf{x}, t) \) is the density fluctuation, which depends on time and all spatial directions. Both \(\rho_0 \) and \(\tilde{\rho} (x_3) \) are considered known, and the Boussinesq forcing term in Eq. (1) is given by

\[
\mathbf{f}_b = -Ri \rho' (\mathbf{x}, t) \mathbf{e}_3 - R\mathbf{f} (\phi (\mathbf{x}, t) - \tilde{\rho} (x_3) - \rho_0) \mathbf{e}_3, \tag{6}
\]

where \(Ri \) is the Richardson number, which is a non-dimensional parameter that characterizes the degree of stratification in the flow, and \(\mathbf{e}_3 \) is a Cartesian basis vector pointing in the direction opposite to the gravitational force.

In the case of density stratification \(Ri \) is defined as

\[
Ri = \frac{N^2 D^2}{U^2}, \tag{7}
\]

were \(U \) and \(D \) are the characteristic velocity and length scales, and \(N \) is the Brunt–Vaissala or buoyancy frequency [34,39] given by

\[
N^2 = \frac{g}{\rho_0} \frac{\partial \tilde{\rho}}{\partial x_3}, \tag{8}
\]

where \(g \) is the gravitational acceleration magnitude. Note that the definition of the Boussinesq forcing term given by Eqs. (6)-(8) implies that the characteristic density scale is \(D \frac{\partial \rho}{\partial x_3} \). Also note that the definition given by Eq. (8) is meaningful only in the case of negative vertical density gradient (i.e., lighter fluid on top and heavier fluid on the bottom), which is what defines stable stratification.

Provided the appropriate initial and boundary conditions are specified, the above equations constitute a complete mathematical model of density-stratified flows at the continuous level.

3. The new RBVMS formulation for stratified flows

Let \(\mathcal{V} \) denote the trial function space for the velocity-pressure-density triple \((\mathbf{u}, p, \phi) \), and let \(\mathcal{W} \) be the space of test functions for the momentum, continuity and density equations denoted by \((w, q, \eta) \). The weak form of the stratified-flow equations is stated as follows: Find \((\mathbf{u}, p, \phi) \) in \(\mathcal{V} \) such that \(\mathcal{V} (\mathbf{w}, q, \eta, w, q, \eta) \). (9)

Here, \(B \) and \(\mathcal{F} \), the semi-linear form and linear functional, respectively, are defined as

\[
B((\mathbf{w}, q, \eta), (\mathbf{u}, p, \phi)) = \mathcal{F}((\mathbf{w}, q, \eta)). \tag{9}
\]

where \(\Omega \) is the flow domain, \(\Gamma_h \) and \(\Gamma_{h}^{\partial} \) are the subsets of the domain boundary with traction and diffusive-flux boundary conditions, respectively, and \(\mathbf{h} \) and \(\mathbf{h} \) are the prescribed traction and diffusive-flux functions, respectively.

In this paper the RBVMS framework [4] is adopted to develop a numerical formulation for the stratified-flow equations. RBVMS relies on the orthogonal decomposition of the trial- and test-function spaces, namely, \(\mathcal{V} = \mathcal{V}^h \otimes \mathcal{V}' \) and \(\mathcal{W} = \mathcal{W}^h \otimes \mathcal{W}' \), where the objects marked by ' denote the spaces of unresolved or fine-scale components of the velocity, pressure, and density fields. With this decomposition, the solution fields are split into two parts, namely,

\[
\mathbf{u} = \mathbf{u}^h + \mathbf{u}', \tag{12}
\]

\[
p = p^h + p', \tag{13}
\]

\[
\phi = \phi^h + \phi', \tag{14}
\]

where the coarse-scale quantities with superscript \(h \) are resolved on a given problem mesh.

Substituting the above decomposition into the weak form of the stratified-flow equations given by Eq. (9), and restricting the test functions to reside in the space of coarse scales, yields the following semi-discrete RBVMS formulation: Find \((\mathbf{u}^h, p^h, \phi^h) \) in \(\mathcal{V}^h \), such that \(\mathcal{V} (\mathbf{w}^h, q^h, \eta^h) \) \(\mathcal{V} (\mathbf{w}^h, q^h, \eta^h) \)

\[
B_{\text{VMS}}((\mathbf{w}^h, q^h, \eta^h), (\mathbf{u}^h, p^h, \phi^h)) = \mathcal{F}_{\text{VMS}}((\mathbf{w}^h, q^h, \eta^h)), \tag{15}
\]

where \(B_{\text{VMS}} \) and \(\mathcal{F}_{\text{VMS}} \) are given by
where $\partial \xi_k/\partial x_i$ is the Jacobian of the mapping between the parameter element and its physical-domain counterpart. Such element metric tensors are typically employed in FEM and IGA to obtain element length scales needed for the definition of fine-scale parameters (see, e.g., \cite{4}).

The square-root-inverse in Eq. (23) may be computed analytically, and expressed as

$$\mathbf{r} = \begin{pmatrix} \tau_M & 0 & 0 & 0 \\ 0 & \tau_M & 0 & 0 \\ 0 & 0 & \tau_M & \tau_F \\ 0 & 0 & 0 & \tau_\phi \end{pmatrix},$$

where τ_M and τ_ϕ turn out to be the standard scalar-valued parameters employed in the stabilized and multiscale formulations of incompressible-flow and advection–diffusion equations \cite{17,25,45-47,50}.

$$\tau_M = \left(\frac{4}{\Delta t} + \bar{u}_i^0 G_{ij} \bar{u}_j^0 + G_{ij} \bar{u}_i^2 G_{ij} G_{ij}\right)^{-1/2},$$

and the off-diagonal term \mathbf{r} is given by

$$\mathbf{r} = \frac{4 \bar{Ri}}{\Delta t} \mathbf{r}^{-1} \mathbf{r} + \tau_M^2 \mathbf{r}^{-1} \mathbf{r}. \mathbf{r}.$$

In this work we assume that the pressure fine-scale parameter from Eq. (19) retains its usual definition \cite{4}, namely,

$$\tau_c = (G_{ij} \bar{u}_j)^{-1}. $$

Note that in the above equations the Einstein summation convention is adopted, which implies summation is taken over all the repeated indices.

Remark. Construction of the velocity fine scales presented above explicitly accounts for the coupling of the Navier–Stokes and density equations through the Boussinesq term. This coupling is reflected in the definition of the A_{ij} matrix in Eq. (25), and gives rise to a non-diagonal \mathbf{r} in Eq. (23).

Remark. The off-diagonal component of \mathbf{r} given by Eq. (32) is proportional to \bar{Ri}. In the case of no stratification, $\bar{Ri} = 0$, and the formulation automatically reverts to the original RBVMS technique with a diagonal \mathbf{r}.

Remark. In the present work, the new RBVMS formulation of stratified flows is presented on a stationary domain. See \cite{11,43} for the comparable ALE-VMS and ST-VMS formulations for stratified incompressible flows on a moving domain. Extension of the present methodology to the moving-domain case is straightforward.

4. Numerical examples

In this section we present two stratified turbulent-flow examples: A spatially-evolving self-propelled wake and a pressure-driven channel flow. In the former case, linear-tetrahedral FEM is employed for the spatial discretization, while in the latter case the RBVMS formulation is discretized using NURBS-based IGA. This ability to accommodate very different spatial discretizations is viewed as one of the most attractive features of the RBVMS formulation. In the computations presented, the stratified-flow equations are advanced in time using the generalized-α method \cite{5,18,31}. The resulting nonlinear-equation systems are solved using the Newton–Raphson technique, and GMRES with block-diagonal preconditioning \cite{37} is employed to solve the linear-equation systems at each nonlinear iteration.
4.1. Spatially-evolving self-propelled turbulent wake at \(Re = 15,000 \)

In this section, a spatially evolving wake at \(Re = 15,000 \), \(Ri = 1/9 \), and \(Pr = 1 \) is simulated using the new RBVMS technique. As in the original reference [35], we refer to this case as SP50, which denotes spatially-evolving model of a self-propelled wake with 50% mean kinetic energy with a given energy spectrum. The DNS and original RBVMS simulations of this test case were performed in [35] and [11], respectively. The problem setup, parameters, boundary conditions, mesh size, and time-step size employed in the present simulation are the same as in the original RBVMS simulation from [11], and are briefly summarized below.

The computational domain is a box with dimensions \(22.125 \times 14.482 \times 65 \) D, where D is the characteristic length. The boundary conditions are set as follows. At the inlet, the inflow velocity and density are prescribed. The inflow data is generated by a standalone computation of a temporally evolving wake, which is carried out using a structured-grid finite-volume technique. At the outlet, zero-traction boundary conditions are imposed. On the lateral boundaries, no-penetration and zero-tangential-traction boundary conditions are set for the Navier–Stokes equations, and flux boundary conditions consistent with the background density stratification are imposed for the density equation.

In the computational domain, two refined coaxial cones are built to better capture the stratified turbulent wake. The radii of the inner and outer cones at the inlet are 2.5 D and 3.5 D, respectively, and at the outlet are 3.5 D and 6 D, respectively. The size of the refined region is sufficient to contain the expanding wake. The inlet and planar cut at \(y = 0 \) of the computational mesh are depicted in Figs. 1 and 2. The mesh statistics are summarized in Tables 1 and 2. The time step is set to \(\Delta t = 0.002 \).

Fig. 3 shows the instantaneous internal gravity wave field visualized using streamwise vorticity \(\omega_1 \) contours at \(x_1 = 46.11 \). The RBVMS simulations are able to replicate the gravity-wave patterns, such as pancake-like vortices, which are present in the DNS results.

However, as is evident from the figure, the results of the new RBVMS formulation show more pronounced vorticity lobes, and are visually in much better agreement with the DNS data than the results of the original RBVMS formulation. Fig. 4 shows the plane-integrated turbulent production and normalized turbulent kinetic energy plotted as a function of the streamwise coordinate \(x_1 \). Good agreement is achieved between the RBVMS simulations and the DNS results. For the quantities presented, differences between the new and original RBVMS results are not as pronounced, except for integrated production in the region around \(x_1 = 20 \), where the new RBVMS formulation shows significant improvement over its original counterpart. Velocity magnitude on several planes along the streamwise direction is visualized in Fig. 5. The turbulent wake expands in both vertical and spanwise directions. Eddies are formed and travel to the boundary in the downstream direction, displaying complex flow behavior.

4.2. Pressure-driven turbulent channel flow at \(Re = 180 \)

We compute the problem of stratified turbulent channel flow. The flow is characterized by dimensionless friction Reynolds and Richardson numbers, \(Re_t \) and \(Ri_t \), respectively, which are defined as \(Re_t = \frac{u \delta}{v} \) and \(Ri_t = \frac{\Delta \rho g \delta}{\rho_0 u^2} \). Here \(u_t \) is the friction velocity, \(\delta \) is the channel half-height, \(\Delta \rho \) is the difference in the density values between the channel walls, and \(g \) is the gravitational acceleration. The flow is driven by a constant pressure gradient along the streamwise direction. A stable stratification is enforced by setting a higher constant density at the bottom wall, and a lower constant density at the top wall. We set \(Re_t = 180 \) and \(Pr = 0.71 \). An unstratified case with \(Ri_t = 0 \) and a stratified case with \(Ri_t = 18 \) are computed using both formulations. (Note that the original and new RBVMS formulations are identical for the case of \(Ri_t = 0 \).) The computational domain, depicted in Fig. 6, is a box with dimensions \(4 \pi \times \frac{1}{2} \pi \times 2 \) discretized using \(48 \times 64 \times 64 \) quadratic NURBS elements in the streamwise, spanwise, and wall-normal directions, respectively. The time step is set to \(\Delta t = 0.025 \). The RBVMS results are compared with the fine-grid LES of [1] and the DNS of [21] when possible.

Fig. 7 shows the ensemble-averaged streamwise velocity and density as functions of the wall-normal coordinate. In the figure, the velocity is scaled by \(u_0 \), which is the mean centerline streamwise velocity for the case with no stratification (i.e., \(Ri_t = 0 \)), while the density is shifted by \(\rho_\infty \), the mean centerline density of the unstratified case, and normalized by \(\Delta \rho \). For the unstratified case, excellent agreement between the RBVMS, the LES of [1] and DNS of [21] is achieved for both mean velocity and density. For the stratified case, close to the walls, the RBVMS results agree with the LES and DNS very well. In the channel core, however, some deviation is observed between the original RBVMS and LES and DNS results of [1,21], respectively, while the results produced by the new RBVMS formulation are in excellent agreement with the LES and DNS. These results show a clear advantage of the new RBVMS formulation over its original counterpart for stratified turbulent flows.

Fig. 8 shows the root-mean-square (RMS) of streamwise velocity and density as functions of the wall-normal coordinate. Only the results of the stratified case \(Ri_t = 18 \) are reported. The velocity fluctuations are normalized using the channel bulk velocity \(u_0 \), while the density fluctuations are normalized by \(\Delta \rho \). Relative to the LES of [1], the new RBVMS gives more accurate results than the original RBVMS. The differences are most pronounced for the RMS of density, where the original RBVMS underpredicts the fluctuation by nearly 25% in the channel core. Continuing with density RMS, the newly introduced RBVMS method is in better agreement with the LES of [1] than the DNS of [21]. This is expected given that the RBVMS simulation is closer to an LES than a DNS. Meanwhile the streamwise velocity RMS obtained with the new RBVMS
method displays similar structure to the streamwise velocity RMS from the LES [1] and the DNS [21] in the bulk flow region \(x_3/\delta > 0.4\), where all three RMS profiles follow a near-linear profile for most this range (except at mid-height, \(x_3/\delta = 1\)). This is in contrast with the velocity RMS profile obtained with the original RBVMS method which misses this near-linear behavior displaying a pronounced curvature up to \(x_3/\delta = 1\).

In terms of spanwise and wall-normal velocity RMS (normalized using the channel bulk velocity \(u_b\)), Fig. 9 shows that the new RBVMS gives more accurate results than the original RBVMS throughout the majority of the channel depth.

In addition to simulations at \(\text{Re}_T = 18\), corresponding to a weakly stably stratified regime, [21] and [1] have conducted simulations at \(\text{Re}_T\) much greater than 18. Stably stratified channel flow simulations at \(\text{Re}_T > 180\) were also performed in [21]. However, even at the relatively low stratification corresponding to \(\text{Re}_T = 18\), the stratification induces significant changes to mean velocity and density fields and related higher order statistics, as observed above. Furthermore, even at this relatively low stratification, the trajectory of simulations are significantly different than the unstratified case due to the tendency of the stratification to initially suppress the turbulence. This suppression can last over on the order of one or more flow-throughs, but eventually the turbulence re-ignites leading to a stably stratified turbulent regime (see [1] for details of the initial suppression of the turbulence). In our experience, the original RBVMS method on LES grids can lead to suppression of the turbulence over longer periods than the new RBVMS. Future research should focus on the physical significance of this initial suppression of the turbulence and how the different LES subgrid-scale models behave during this stage. Future research
5. Conclusions

A new numerical formulation for stably-stratified turbulent flows is developed using the framework of RBVMS methods. Using ideas from stabilized methods for convective–diffusive systems and compressible flows, a new closure model for the fine scales is proposed that introduces coupling between the velocity fine scales and density-equation residual. The new formulation was tested on two turbulent-flow examples and showed good agreement with the DNS and fine-grid LES results reported by other researchers. Although the new RBVMS formulation only adds one term to the velocity fine scales that is based on the residual of the density equation, this seemingly small change shows a relatively large accuracy improvement over the traditional RBVMS, in which the velocity, pressure, and density fine scales are proportional only to

should also assess the new RBVMS formulation at $Re_T > 180$ for which the work of [21] has uncovered new physics not present in the $Re_T = 180$ case.
the strong residuals of their respective equations. Because this new term scales with Richardson number, its positive effect is more pronounced with increasing density stratification, as evidenced by the numerical results presented.

Acknowledgements

This work was partially supported by the NSF CAREER Awards 1055091 and 0846510, and NSF Award CBET-1306869. This support is gratefully acknowledged.

References

